Three Secoiridoid Glucosides Esterified with a Linear Monoterpene Unit and a Dimeric Secoiridoid Glucoside from *Jasminum polyanthum*

Takao Tanahashi,* Yukiko Takenaka, and Naotaka Nagakura

Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658, Japan

Received January 6, 1997[®]

Reinvestigation of the dried flowers of *Jasminum polyanthum* has led to the isolation of four new secoiridoid glucosides, namely, jaspofoliamosides A (1) and B (2), jaspolinaloside (3), and neopolyanoside (4). The structures of new compounds were elucidated on the basis of chemical and spectroscopic evidence.

Jasminum polyanthum Franch. is a shrub belonging to the family Oleaceae. Its dried flowers have been used as the crude drug "Ye su xin" in Chinese folk medicine.¹ In the course of our chemical studies on the secoiridoid glucosides from oleaceous plants,² we have previously investigated the constituents of this crude drug and isolated 12 new secoiridoid glucosides and characterized eight of these.^{3,4} Recently, a Taiwanese group reported the isolation of several secoiridoid glucosides, including a novel representative from the leaves of the same plant.^{5,6} In a continuation of our study, we report here the structure elucidation of the remaining four glucosides, that is, three secoiridoid glucosides (1–3), each of which was esterified with a linear monoterpene unit, and one dimeric secoiridoid glucoside (4) (Chart 1).

Jaspofoliamoside A (1) was isolated as an amorphous powder and gave an octaacetate (1a) on conventional acetylation. The HRSIMS of 1 established an elemental composition of $C_{33}H_{50}O_{18}$. It showed a UV maximum at 225.5 nm and IR bands at 3421 (OH), 1715 (COO), and 1636 (C=C) cm⁻¹. Its distinctive ¹H-NMR spectral features [H-3 at δ 7.53, OMe at δ 3.72 (s), H-8 at δ 6.11 (br q, J = 7.0 Hz), H-1 at δ 5.94 (br s), H-1' at δ 4.81 (d, J = 7.5 Hz), H₃-10 at δ 1.74 (dd, J = 7.0, 1.0 Hz)] indicated that 1 possessed an oleoside 11-methyl ester (5) moiety in its structure. The ¹H-NMR spectrum, moreover, displayed additional signals for an anomeric proton at δ 5.53 (d, J = 8.0 Hz), a secondary methyl group at δ 0.96 (d, J = 6.5 Hz), a vinyl methyl group at δ 1.87 (br s), a pair of oxygenated methylene protons at δ 4.06 (dt, J = 11.0, 6.0 Hz) and 4.13 (dt, J = 11.0, 7.0 Hz), and an olefinic proton at δ 6.91 (tq, J = 7.0, 1.5Hz). The ¹³C-NMR spectrum of **1** showed, besides the signals corresponding to the oleoside 11-methyl ester, resonances of 16 carbons, of which six were assignable to a 1-O-acyl- β -glucose unit.⁷ With the aid of ¹H-¹H COSY, HMQC, and HMBC experiments, the remaining 10 carbon signals were evaluated as a 6,7-dihydrofoliamenthic acid [6, 8-hydroxy-2,6-dimethyl-2(*E*)-octenoic acid] moiety, which is also contained in other iridoid glucosides such as 6"R, 7"-dihydro-10-O-foliamenthoylaucubin.⁸ An *E*-configuration of the olefinic bond at C-2" was deduced from the chemical shift of the olefinic proton⁹ and an NOE interaction between the vinyl methyl and methylene proton at δ 2.26 observed in the NOESY spectrum of 1. The downfield shift of H₂-8" and C-8" and the upfield shift of C-7" in 1 relative to the corresponding signals in (β -D-glucopyranosyl)-8-hydroxy-2,6-dimethyloct-2-enoate⁷ showed an acylation of the hydroxyl group at C-8". These findings suggested that, in the structure of jaspofoliamoside A (1), the C-7 carboxyl group of its oleoside 11-methyl ester moiety was linked to the C-8" hydroxyl group of the 6,7dihydrofoliamenthic acid unit, whose C-1" carboxyl group was esterified with the C-1" hydroxyl group of β -glucose. The esterification linkages were further substantiated by significant HMBC correlations between H-1" and C-1" and between H-8" and C-7. Finally, alkaline hydrolysis of 1 yielded dihydrofoliamenthic acid (6) along with oleoside (7). The negative sign of the optical rotation of **6** was in agreement with that reported for (6.S)-dihydrofoliamenthic acid, implying the absolute configuration at C-6" in **1** to be S^{10} However, this result could not completely rule out the possibility that 1 contained a small portion of the 6"epimer as seen in 3 mentioned below, because the optical purity of 6 could not be determined by chromatographic procedures.

The second glucoside (2), C₃₃H₄₈O₁₈, was also isolated as an amorphous powder. A comparison of the spectra of 2 with those of 1 suggested a close relationship between their structures. The ¹H- and ¹³C-NMR spectral features of 2 resembled those of 1 except that 2 demonstrated signals for a vinyl methyl group at δ 1.74 (d, J = 1.0 Hz) and an olefinic proton at δ 5.38 (tg, J =7.5, 1.0 Hz), instead of a three-proton doublet at δ 0.96 as in 1. These differences in their spectra could be accounted for by the introduction of a double bond between C-6" and C-7" of the dihydrofoliamenthoyl group in **1**. This received further support from the ¹³C-NMR spectrum of 2, where two sp³ resonances observed at δ 30.86 and 36.60 in the spectrum of **1** were replaced by two sp² carbons (δ 142.28 and 120.53). The sequence of the oleoside 11-methyl ester, foliamenthic acid (8), and β -glucose units in **2** was confirmed to be the same as in **1** by comparative analysis of the ¹³C-NMR spectra of both compounds and of 10-O-foliamenthoylaucubin,8 as well as HMBC experiments with 2. The E-configuration of the olefinic bonds at C-2" and C-6" was deduced from the NOE cross peaks between the vinyl methyl at δ 1.86 and H₂-4" at δ 2.38, and between the vinyl methyl at δ 1.74 and H₂-8" at δ 4.54 and 4.61 observed in the NOESY spectrum of 2. Accordingly, compound 2 was formulated as shown and designated as jaspofoliamoside B.

^{*} To whom correspondence should be addressed. Phone: 81-78-441-7546. FAX: 81-78-441-7547. E-mail: tanahash@kobepharma-u.ac.jp. [®] Abstract published in *Advance ACS Abstracts*, May 1, 1997.

Chart 1

Glucoside 3, named jaspolinaloside, was analyzed for $C_{27}H_{40}O_{12}$ from its HRSIMS. It was evident from its ¹H- and ¹³C-NMR spectra that **3** possessed an oleoside 11-methyl ester moiety and a monoterpene unit, as in 1 and 2, but no additional glucose. The ¹H-NMR spectrum of 3 demonstrated the presence in the monoterpene unit of two methyl groups (δ 1.26 and 1.65), a terminal vinyl group (δ 5.91, 5.20, 5.03), an olefinic proton (δ 5.47) adjacent to a methylene group, an oxygenated methylene group (δ 4.36, 4.48), and two methylene groups (δ 1.54 and 2.01), suggesting that the monoterpene unit in 3 should be 1-hydroxylinalool (9) or 9-hydroxylinalool (10). Inspection of the ¹³C-NMR data of 3, 9, 10, and 1-acetoxylinalool (11) indicated the monoterpene unit to be 1-hydroxylinalool with its C-1 hydroxyl group esterified.^{11,12} The esterification pattern was elucidated by HMBC experiments, which showed ${}^{3}J$ interactions between H-1" and C-7 (δ 173.06) and between the methoxyl and C-11 (δ 168.66). Accordingly, the structure of jaspolinaloside was elucidated as 3, except for the absolute configuration at C-6". In order to establish the stereochemistry at the chiral center, compound 3 was subjected to alkaline hydrolysis followed by acetylation to give 1-acetoxylinalool (11). Chiral HPLC analysis showed 11 to be a mixture of (6.S)-1-acetoxylinalool and (6R)-1-acetoxylinalool in the ratio

of 31:69. These results led to the conclusion that jaspolinaloside (**3**) was an inseparable mixture of diastereoisomers, similar to jashemslosides A and B, which are iridoid glucosides esterified with enantiomeric monoterpene units.¹³

Compound **4** was obtained as an amorphous powder. The HRSIMS measurement revealed a molecular formula of C₄₈H₆₄O₂₇. Its ¹H-NMR spectral features suggested that glucoside 4 was composed of two secoiridoid glucoside units [H-3a and H-3b (δ 7.48, 7.51), two anomeric protons (δ 4.80, 4.67) and two methoxyls (δ 3.71, 3.64)], a *p*-hydroxyphenethyl moiety, and an additional glucose unit in the same case as in a dimeric secoiridoid glucoside, polyanoside (12).⁴ However, its ¹H-NMR spectrum showed only one set of signals corresponding to an ethylidene group at δ 6.06 (1H, qd) and 1.64 (3H, dd), but exhibited characteristic signals for a vinyl group at δ 5.07 (1H, dd, J = 10.0, 1.0 Hz), 5.14 (1H, dd, J = 17.0, 1.0 Hz), and 5.55 (1H, dt, J =17.0, 10.0 Hz). These findings were indicative of the presence in 4 of one oleoside 11-methyl ester (5) (a part) and one secologanoside 11-methyl ester (13) (b part) unit, instead of two oleoside 11-methyl ester units as in 12. Further support for this conclusion was obtained from its ¹³C-NMR spectrum, which was very similar to that of 12, except that one set of the carbon signals

Table 1.	¹³ C-NMR S	pectral Data	of Compounds	1-4 in	1 CD ₃ OD
----------	-----------------------	--------------	--------------	--------	----------------------

Notes

						4		
carbon	1		2		3	a part		b part
1	95.18		95.21		95.21	95.21		97.67
3	155.16		155.16		155.16	155.19		153.81
4	109.46		109.45		109.43	109.41		109.92
5	31.93		31.92		31.92	31.88		28.68
6	41.30		41.26		41.28	41.26		35.60
7	173.33		173.17		173.06	173.18		173.90
8	124.75		124.84		124.84	124.92		134.08
9	130.76		130.60		130.67	130.52		45.01
10	13.69		13.74		13.70	13.64		121.10
11	168.67		168.69		168.66	168.66		168.86
OMe	51.97		51.95		51.93	51.98		51.81
1′, 1‴	100.85	95.98	100.92	95.99	100.90	100.91	102.38	100.06
2', 2'''	74.81	74.03	74.05^{b}	74.82 ^b	74.82	74.53^{c}	74.73	74.81 ^c
3', 3'''	77.97 ^a	78.15 ^a	77.98^{b}	78.17 ^b	77.99	78.12 ^c	77.88	77.97 ^c
4', 4'''	71.14 ^a	71.59 ^a	71.12^{b}	71.56^{b}	71.49	71.48 ^c	71.32	71.56 ^c
5′, 5‴	78.48 ^{a'}	78.82 ^a	78.49^{b}	78.84 ^b	78.48	78.37	75.34	78.49
6', 6'''	62.39 ^a	62.87 ^a	62.84 ^b	62.38^{b}	62.86	62.84	64.27	62.59
1″	168.19		168.08		71.58	66.70		
2″	128.28		128.68		131.30	35.25		
3″	145.61		144.68		130.87	133.39		
4″	27.27		28.08		23.53	131.03		
5″	36.43		38.98		42.77	118.07		
6″	30.86		142.28		73.75	157.78		
7″	36.60		120.53		146.22	118.07		
8″	64.10		62.43		112.21	131.03		
9″	12.47		12.52		14.09			
10″	19.68		16.56		27.74			

^{a-c} Assignments may be reversed horizontally.

attributable to the oleoside 11-methyl ester was replaced by the signals assignable to the secologanoside 11methyl ester unit.¹⁴ It was evident from the coupling constant (J = 7.5 Hz) of the anomeric proton H-1^{'''} at δ 4.87, an HMBC correlation between H-1" and the aromatic carbon at δ 157.78, and the chemical shifts of aromatic carbons comparable to those of 12, that an additional glucose was connected to the hydroxyl group of the aromatic ring with a β -linkage. The ester linkages of an oleoside methyl ester, a secologanoside methyl ester and a p-glucosyloxyphenethyl alcohol moiety were determined by a combination of 2D-NMR experiments, which permitted the assignment of almost all of the ¹H- and ¹³C-NMR signals. Significant HMBC cross peaks were observed between the methoxyl signal (δ 3.71) and C-11a (δ 168.66), between the methoxyl signal (δ 3.64) and C-11b (δ 168.86), between H₂-1" (δ 4.140 and 4.25) and C-7a (δ 173.18), and between the proton signal at δ 4.137 and C-7b (δ 173.90). The proton signal at δ 4.137 was assigned at H-6^{'''} rather than H-6'a on the basis of a COSY correlation with H-5" at δ 3.63, which showed a NOESY interaction with H-1" as well as an HMBC cross peak with C-1^{'''} at δ 102.38. These results suggested that an oleoside 11-methyl ester unit was esterified with the C-1" hydroxyl of a pglucosyloxyphenethyl alcohol moiety, while a secologanoside 11-methyl ester unit was connected to the hydroxyl group at C-6" of the glucose attached to the aromatic ring in the isolated glucoside. Consequently, the structure of the new compound is represented by 4, and this compound designated as neopolyanoside.

Oleoside-type secoiridoid glucosides with a linear mototerpene unit, 1-3, and dimeric secoiridoid glucosides such as neopolyanoside (4) and polyanoside (12) are characteristic of the flowers of *J. polyanthum*, while monomeric secoiridoid glucosides coupled with a phenethyl moiety, oleuropein and ligstroside, are major constituents common to the flowers and leaves of this species.^{3,4,6}

Experimental Section

General Experimental Procedures. These were as described previously.⁴

Plant Material and Isolation of Glucosides. The crude drug, identified as "Ye su xin", from the dried flowers of *J. polyanthum*, was obtained from Sunstar Bai Yunshan Co., Ltd., in Guangzhou, China. Voucher specimens (KPFY-862) are deposited in the laboratory of Kobe Pharmaceutical University. Isolation of glucosides were described in a previous publication.⁴ Compounds I, II, III, and IV in Tanahashi *et al.*⁴ correspond to **2**, **1**, **4**, and **3**, respectively.

Jaspofoliamoside A (1): colorless amorphous powder; $[\alpha]^{27}$ _D -125° (*c* 0.76, MeOH); UV (MeOH) λ_{max} (log ϵ) 225.5 (4.31) nm; IR (KBr) ν_{max} 3421, 1715, 1636, 1076, 816 cm⁻¹; ¹H NMR (CD₃OD) δ 0.96 (3H, d, J = 6.5 Hz, H₃-10"), 1.48 (2H, m, H-5", H-7"), 1.59 (1H, m, H-6"), 1.70 (2H, m, H-5", H-7"), 1.74 (3H, dd, J = 7.0, 1.0 Hz, H₃-10), 1.87 (3H, br s, H₃-9"), 2.26 (2H, m, H₂-4"), 2.48 (1H, dd, J = 14.5, 9.0 Hz, H-6), 2.71 (1H, dd, J = 14.5, 4.5 Hz, H-6), 3.66 (1H, dd, J = 12.0, 4.5 Hz, H-6^{'''} or H-6'), 3.68 (1H, dd, J = 12.0, 4.5 Hz, H-6' or H-6'''), 3.72 (3H, s, OMe), 3.84 (1H, dd, J = 12.0, 1.5 Hz, H-6' or H-6^{'''}), 3.89 (1H, dd, J = 12.0, 2.0 Hz, H-6^{'''} or H-6[']), 3.99 (1H, dd, J = 9.0, 4.5 Hz, H-5), 4.06 (1H, dt, J = 11.0, 6.0 Hz, H-8"), 4.13 (1H, dt, J = 11.0, 7.0 Hz, H-8"), 4.81 (1H, d, J = 7.5 Hz, H-1'), 5.53 (1H, d, J = 8.0 Hz, H-1^{'''}), 5.94 (1H, br s, H-1), 6.11 (1H, br q, J = 7.0 Hz, H-8), 6.91 (1H, tq, J = 7.0, 1.5 Hz, H-3"), 7.53 (1H, s, H-3); ¹³C NMR, see Table 1; HRSIMS *m*/*z* 757.2893 [M + Na]⁺, calcd for C₃₃H₅₀O₁₈Na 757.2897.

Jaspofoliamoside B (2): colorless amorphous powder; $[\alpha]^{28}_{\rm D} - 118^{\circ}$ (*c* 0.37, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 226 (4.29) nm; IR (KBr) $\nu_{\rm max}$ 3423, 1729, 1709, 1634, 1076, 818 cm⁻¹; ¹H NMR (CD₃OD) δ 1.73 (3H, dd, J = 7.0, 1.5 Hz, H₃-10), 1.74 (3H, d, J = 1.0 Hz, H₃-10"), 1.86 (3H, d, J = 1.5 Hz, H₃-9"), 2.19 (2H, br t, J = 7.0 Hz, H₂-5"), 2.38 (2H, br q, J = 7.0 Hz, H₂-4"), 2.46 (1H, dd, J = 14.0, 9.5 Hz, H-6), 2.72 (1H, dd, J = 14.0, 4.5 Hz, H-6), 3.66, 3.68 (each 1H, dd, J = 12.0, 6.0 Hz, H-6' and H-6'''), 3.72 (3H, s, OMe), 3.83 (1H, dd, J = 12.0, 2.0 Hz, H-6''' or H-6'), 3.89 (1H, dd, J = 12.0, 2.5 Hz, H-6' or H-6'''), 4.00 (1H, dd, J = 9.5, 4.5 Hz, H-5), 4.54, 4.61 (each 1H, dd, J = 12.0, 7.0 Hz, H₂-8''), 4.80 (1H, d, J = 8.0 Hz, H-1'), 5.38 (1H, tq, J = 7.5, 1.5 Hz, H-7'), 5.52 (1H, d, J = 8.0 Hz, H-1'''), 5.94 (1H, br s, H-1), 6.10 (1H, qd, J = 7.0, 2.0 Hz, H-8), 6.89 (1H, tq, J = 7.0, 1.5 Hz, H-3''), 7.52 (1H, s, H-3); ¹³C NMR, see Table 1; HRSIMS m/z 731.2753 [M – H]⁻, calcd for C₃₃H₄₇O₁₈ 731.2764.

Jaspolinaloside (3): colorless amorphous powder; $[\alpha]^{29}_{D} - 147^{\circ}$ (*c* 0.39, MeOH); UV (MeOH) λ_{max} (log ϵ) 237.5 (4.08) nm; IR (KBr) v_{max} 3423, 1731, 1711, 1636, 1078, 818 cm⁻¹; ¹H NMR (CD₃OD) δ 1.26 (3H, s H₃-10"), 1.54 (2H, m, H₂-5"), 1.65 (3H, br t, J = 0.5 Hz, H_3-9''), 1.73 (3H, dd, J = 7.0, 1.5 Hz, H_3-10), 2.01 (2H, m, H₂-4"), 2.49 (1H, dd, J = 14.5, 9.0 Hz, H-6), 2.73 (1H, dd, J = 14.5, 4.5 Hz, H-6), 3.66 (1H, dd, J = 12.0, 6.0 Hz, H-6'), 3.71 (3H, s, OMe), 3.88 (1H, dd, J = 12.0, 2.0 Hz, H-6'), 4.00 (1H, dd, J = 9.0, 4.5 Hz, H-5), 4.36, 4.48 (each 1H, br d, J = 12.0 Hz, H₂-1"), 4.80 (1H, d, J = 8.0 Hz, H-1'), 5.03 (1H, dd, J = 11.0, 1.5 Hz, H-8"), 5.20 (1H, dd, J = 17.5, 1.5 Hz, H-8"), 5.47 (1H, tq, J = 7.0, 1.0 Hz, H-3''), 5.91 (1H, dd, J =17.5, 11.0 Hz, H-7"), 5.94 (1H, br s, H-1), 6.11 (1H, qd, J = 7.0, 1.0 Hz, H-8), 7.52 (1H, s, H-3); ¹³C NMR, see Table 1; HRSIMS m/z 579.2431 [M + Na]⁺, calcd for C27H40O12Na 579.2419.

Neopolyanoside (4): colorless amorphous powder; $[\alpha]^{27}$ _D -137° (*c* 0.51, MeOH); UV (MeOH) λ_{max} (log ϵ) 224 (4.37), 236 sh (4.31), 272 sh (3.18), 278 (3.08) nm; IR (KBr) v_{max} 3421, 1730, 1707, 1630, 1512, 1076, 818 cm⁻¹: ¹H NMR (CD₃OD) δ 1.64 (3H. dd. J = 7.0, 1.5 Hz, H₃-10a), 2.29 (1H, dd, J = 16.5, 9.0 Hz, H-6b), 2.44 (1H, dd, J = 14.0, 9.0 Hz, H-6a), 2.69 (1H, dd, J = 14.0, J)4.5 Hz, H-6a), 2.86 (1H, ddd, J = 10.0, 5.5, 4.0 Hz, H-9b), 2.87 (2H, t, J = 7.0 Hz, H_2 -2"), 3.03 (1H, dd, J = 16.5, 5.5 Hz, H-6b), 3.28 (1H, m, H-5'a), 3.32 (1H, m, H-5b), 3.34 (1H, m, H-5'b), 3.63 (1H, ddd, J = 9.0, 5.5, 2.0 Hz)H-5"'), 3.64 [3H, s, OMe(b)], 3.67, 3.72 (each 1H, dd, J = 12.0, 4.5 Hz, H-6'b and H-6'a), 3.71 [3H, s, OMe(a)], 3.88 (1H, dd, J = 12.0, 1.5 Hz, H-6'b or H-6'a), 3.90 (1H, dd, J = 12.0, 2.0 Hz, H-6'a or H-6'b), 3.95 (1H, dd, J =9.0, 4.5 Hz, H-5a), 4.14 (1H, dd, J = 12.0, 5.5 Hz, H-6"'). 4.14, 4.25 (each 1H, dt, J = 11.0, 7.0 Hz, H₂-1"), 4.57 (1H, dd, J = 12.0, 2.0 Hz, H-6"), 4.67 (1H, d, J = 7.5Hz, H-1'b), 4.80 (1H, d, J = 7.5 Hz, H-1'a), 4.87 (1H, d, J = 7.5 Hz, H-1"'), 5.07 (1H, dd, J = 10.0, 1.0 Hz, H-10b), 5.14 (1H, dd, J = 17.0, 1.0 Hz, H-10b), 5.45 (1H, d, J = 4.0 Hz, H-1b), 5.55 (1H, dt, J = 17.0, 10.0 Hz, H-8b), 5.90 (1H, br s, H-1a), 6.06 (1H, qd, J = 7.5, 1.0 Hz, H-8a), 7.02 (2H, AA'BB' pattern, J = 8.5 Hz, H-5", H-7"), 7.17 (2H, AA'BB' pattern, J = 8.5 Hz, H-4", H-8"), 7.48 (1H, d, J = 1.5 Hz, H-3b), 7.51 (1H, s, H-3a); ¹³C NMR, see Table 1; SIMS m/z 1071 [M - H]⁻, 909; HRSIMS m/z 1071.3569 [M - H]⁻, calcd for C₄₈H₆₃O₂₇ 1071.3559.

Acetylation of 1. Glucoside 1 (14.7 mg) was acetylated with Ac₂O-pyridine, and the crude acetate (22.2 mg) was purified by preparative TLC (Et₂O) to yield 1a (15.5 mg). Colorless amorphous powder; $[\alpha]^{27}_{D}$ -94° (*c* 0.75, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 226 (4.34) nm; IR (KBr) ν_{max} 1743, 1710, 1636, 1077, 818 cm⁻¹;

¹H NMR (CDCl₃) δ 0.93 (3H, d, J = 6.5 Hz, H₃-10"), 1.44, 1.66 (each 1H, m, H₂-5"), 1.56 (1H, m, H-6"), 1.44, 1.66 (each 1H, m, H₂-7"), 1.75 (3H, dd, J = 7.0, 1.5 Hz, H₃-10), 1.83 (3H, d, J = 1.0 Hz, H₃-9"), 2.01, 2.026 (×2), 2.034, 2.037, 2.038, 2.085, 2.090 (24H, 8 × Ac), 2.18 (2H, m, H_2 -4"), 2.41 (1H, dd, J = 14.5, 9.0 Hz, H-6), 2.72 (1H, dd, J = 14.5, 4.5 Hz, H-6), 3.73 (3H, s, OMe), 3.77 (1H, ddd, J = 10.0, 4.5, 2.0 Hz, H-5' or H-5'''), 3.88 (1H, ddd, J = 10.0, 4.5, 2.0 Hz, H-5" or H-5'), 3.98 (1H, dd, J = 9.0, 4.5 Hz, H-5), 4.04 (1H, ddd, J = 11.0, 7.0, 6.0 Hz, H-8"), 4.08 (1H, dt, J = 11.0, 7.0 Hz, H-8"), 4.12 (2H, br dd, J = 12.5, 2.0 Hz, H-6' and H-6'''), 4.31 (1H, dd, J = 12.5, 4.5 Hz, H-6^{$\prime\prime\prime$} or H-6^{\prime}), 4.32 (1H, dd, J = 12.5, 4.5 Hz, H-6' or H-6'''), 5.04 (1H, d, J = 8.0 Hz, H-1'), 5.71 (1H, br t, J = 1.5 Hz, H-1), 5.74 (1H, d, J = 8.0 Hz, H-1""), 6.01 (1H, qd, J = 7.0, 1.0 Hz, H-8), 6.84 (1H, tq, J = 7.5, 1.5 Hz, H-3"), 7.46 (1H, s, H-3); ¹³C NMR (CDCl₃) & 12.17 (C-9"), 13.59 (C-10), 19.19 (C-10"), 20.55, 20.59, 20.67, 20.72 (8 \times COCH₃), 26.44 (C-4"), 29.85^a (C-5), 30.20^a (C-6"), 35.22^b (C-5"), 35.41^b (C-7"), 40.05 (C-6), 51.45 (OCH₃), 61.54^c (C-6'), 61.80^c (C-6'''), 62.96 (C-8"), 67.96^d (C-4'), 68.29^d (C-4""), 70.16^e (C-2'), 70.74^e (C-2"'), 72.23^f (C-3'), 72.53^f (C-3"'), 72.68^g (C-5'), 72.71g (C-5""), 92.06h (C-1""), 93.73h (C-1), 97.05 (C-1"), 108.76 (C-4), 124.74 (C-8), 126.30 (C-2"), 128.25 (C-9), 145.59 (C-3"), 153.01 (C-3), 165.72ⁱ (C-1"), 166.76ⁱ (C-11), 169.19, 169.35, 169.40, 169.43, 170.09, 170.17, 170.56, 170.63, 171.18 (C-7, $8 \times COCH_3$) (a⁻ⁱvalues with same superscript are interchangeable); HRSIMS m/z1071.3895 $[M + H]^+$, calcd for C₄₉H₆₇O₂₆ 1071.3923.

Alkaline Hydrolysis of 1. A solution of **1** (28.6 mg) in 1 M NaOH (2.5 mL) was stirred for 1 h at room temperature. The reaction mixture was neutralized with Amberlite IR-120 (H⁺ form) and concentrated *in vacuo*. The resulting residue (17.5 mg) was purified by preparative HPLC (µBondasphere, 5 µM, C₁₈-100 Å, MeOH–H₂O, 7:3, detection, 210 nm) to give **7** (11.1 mg) and **6** (5.1 mg), $[\alpha]^{25}_{D}$ –12.5° (*c* 0.6, MeOH). Compounds **6** and **7** were identified as dihydrofoliamenthic acid and oleoside, respectively (¹H NMR, SIMS).

HPLC Analysis of 11 Derived from 3. Standard (6R)- and (6S)-1-acetoxylinalools were prepared from (RS)-linally acetate according to the literature¹² and separated by chiral HPLC [column, CHIRALCEL OB (4.6 mm i.d. \times 250 mm, Daicel Chemical Industries, Ltd.); mobile phase, *n*-hexane-*i*-PrOH (100:1); flow rate, 0.6 mL/min; detection, 210 nm; retention time, S form (53 min), R form (56 min)]. The ¹H-NMR data of both compounds were identical with those reported for 1-acetoxylinalool. An R configuration of (6R)-1-acetoxylinalool was deduced from the agreement of the negative sign of its specific optical rotation $[[\alpha]^{27}_{D} - 14^{\circ} (c \ 0.22,$ MeOH)] with those of similar compounds, such as (R)linalool ($[\alpha]_D$ –20.1°) or (*R*)-1-hydroxylinalool ($[\alpha]_D$ -4°),¹⁵ thereby requiring (6*S*)-1-acetoxylinalool [[α]²⁷_D $+16^{\circ}$ (*c* 0.31, MeOH)] to have a 6*S* configuration.

A solution of **3** (1.6 mg) in 1 M NaOH (0.2 mL) was stirred for 1 h at room temperature. The reaction mixture was worked up in the same way as for **1**, and the residue was acetylated as usual. The crude mixture of acetylation products was submitted to HPLC analysis in the same condition as described above, demonstrating **11** to be a mixture of (6"*S*)- and (6"*R*)-enantiomers with the ratio of 31:69.

Acknowledgments. The technical assistance of Misses Y. Kusunoki and C. Suekawa is acknowledged. Thanks are also due to Dr. M. Sugiura, Kobe Pharmaceutical University, for ¹H- and ¹³C-NMR spectra and to Dr. K. Saiki, Kobe Pharmaceutical University, for mass spectral measurements.

References and Notes

- (1) Chiang Su New Medical College, Eds. Zhong-Yao-Dai-Ci-Dian (Dictionary of Chinese Crude Drugs); Shanghai Scientific Technologic Publisher: Shanghai, 1978; p 2141.
- Tanahashi, T.; Shimada, A.; Kai, M.; Nagakura, N.; Inoue, K.; Chen, C.-C. *J. Nat. Prod.* **1996**, *59*, 798–800. (2)
- (3)Tanahashi, T.; Takenaka, Y.; Nagakura, N. Phytochemistry 1996, 41, 1341-1345.
- Tanahashi, T.; Takenaka, Y.; Akimoto, M.; Okuda, A.; Kusunoki, Y.; Suekawa, C.; Nagakura, N. Chem. Pharm. Bull. 1997, 45, 367-372.

- (5) Shen, Y.-C.; Lin, S.-L.; Chein, C.-C. Phytochemistry 1996, 42,
- (5) Snen, 1.-C., Elli, G. L., C., C., J. Chin, C. C. J. Chin. Chem. 1629–1631.
 (6) Shen, Y.-C.; Lin, S.-L.; Hsieh, P.-W.; Chein, C.-C. J. Chin. Chem. Soc. 1996, 43, 171–176.
- (7) Gross, G.-A.; Sticher, O. Helv. Chim. Acta 1987, 70, 91-101.
- (8) Justice, M. R.; Baker, S. R.; Stermitz, F. R. *Phytochemistry* **1992**, 31, 2021-2025
- (9) Nair, M. D.; Adams, R. J. Am. Chem. Soc. 1961, 83, 922–926.
 (10) Iwagawa, T.; Hase, T. Phytochemistry 1983, 22, 255–258.
- (11) Tschesche, R.; Ciper, F.; Breitmaier, E. Chem. Ber. 1977, 110, 3111-3117.
- (12) San Feliciano, A.; Medarde, M.; Lopez, J. M.; Miguel Del Corral, J. M. Anal. Quim. 1986, 82, 195–199.
- (13) Tanahashi, T.; Shimada, A.; Nagakura, N.; Inoue, K.; Ono, M.; Fujita, T.; Chen, C.-C. Chem. Pharm. Bull. 1995, 43, 729-733.
- (14) Kuwajima, H.; Morita, M.; Takaishi, K.; Inoue, K.; Fujita, T.; He, Z.-D.; Yang, C.-R. *Phytochemistry* **1992**, *31*, 1277–1280.
 (15) Hase, T.; Iwagawa, T.; Munesada, K. *Phytochemistry* **1982**, *21*, 1435–1437.

NP9700376